ROS-mediated enhanced transcription of CYP38 promotes the plant tolerance to high light stress by suppressing GTPase activation of PsbO2
نویسندگان
چکیده
As a member of the Immunophilin family, cyclophilin38 (CYP38) is discovered to be localized in the thylakoid lumen, and is reported to be a participant in the function regulation of thylakoid membrane protein. However, the molecule mechanisms remain unclear. We found that, CYP38 plays an important role in the process of regulating and protecting the plant to resist high light (HL) stress. Under HL condition, the gene expression of CYP38 is enhanced, and if CYP38 gene is deficient, photochemistry efficiency, and chlorophyll content falls distinctly, and excessive reactive oxygen species synthesis occurs in the chloroplast. Western blot results showed that the D1 degradation rate of cyp38 mutant plants is faster than that of wide type plants. Interestingly, both gene expression and activity of PsbO2 were drastically enhanced in cyp38 mutant plants and less changed when the deleted gene of CYP38 was restored under HL treatment. This indicates that CYP38 may impose a negative regulation effect on PsbO2, which exerts a positive regulation effect in facilitating the dephosphorylation and subsequent degradation of D1. It is also found that, under HL condition, the cytoplasmic calcium ([Ca(2+)]cyt) concentration and the gene expression level of calmodulin 3 (CaM3) arose markedly, which occurs upstream of CYP38 gene expression. In conclusion, our results indicate that CYP38 plays an important role in plant strengthening HL resistibility, which provides a new insight in the research of mechanisms of CYP38 protein in plants.
منابع مشابه
Improving Rice (Oryza sativa L.) Drought Tolerance by Suppressing a NF-YA Transcription Factor
The response to drought stress is a complicated process involving stress sensing, intracellular signaltransduction, and the execution of a cellular response. Transcription factors play important roles in the signaling pathways including abiotic stress. In the present study a rice NF-YA transcription factor gene was partially characterized following dehydration. Disrupting the gene via a T...
متن کاملRhizophagus irregularis regulates antioxidant activity and gene expression under cadmium toxicity in Medicago sativa
Cadmium (Cd) is a phytotoxic heavy metal (HM) that can induce generation of reactive oxygen species (ROS). Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators that help to mitigate HM-derived oxidative stress. The objective of this study was to assess AM fungus Rhizophagus irregularis on changes in enzymatic activity and transcription of antioxidants of Medicago sativa to Cd s...
متن کاملEffects of chilling and high light stress on phenolic metabolism and antioxidant activity of Aloe vera L. plants
High light (HL) can limit plant photosynthetic activity, growth and productivity. The HL effect was more pronounced in plants grown at low temperature. In order to determine the effects of chilling stress (4 0C) and light intensities (450 and 850 µmol m-2 s-1) on antioxidant defense system and phenolic metabolism of Aloe vera L., an experiment was conducted in a randomized complete block desi...
متن کاملGreen synthesis of Se nanoparticles and its effect on salt tolerance of barley plants
In this study, selenite ions were reduced to selenium nanoparticles using a leaf extract of barley (Hordeum vulgare L.) plants. Characterization of synthesized nanoparticles using Scanning Electron Microscopy (SEM) and UV-visible spectrophotometry indicated the formation of variable size of selenium nanoparticles, suggesting that leaf extract could form polydispersed nanoparti...
متن کاملThe Effect of Drought Stresses, Fusarium Culmorum and Heterodera Filipjevi and their Interactions on the Expression Pattern of Transcription Factor Gene NAC69-3 in Bread Wheat
SExtended Abstract Introduction and Objective: Small grain cereals such as wheat, are affected by types of destructive environmental factors such as abiotic and biotic stresses that severely reduce crop yields. To cope with these conditions, transcription factors cause plant resistance to these stresses by activating or suppressing the expression of genes involved in the resistance responses....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015